LFG UTILIZATION ASSESSMENT AND IMPLEMENTATION IN ISRAEL AND MEXICO

Eric R. Peterson, PE

Project Descriptions

- Mexico Monterrey Landfill
 - -Active
 - Modern
 - No Collection System
 - -8 MM tons in place
 - -Electric Power Project Proposed

Project Descriptions

- Israel Dudaim Landfill
 - -Modern
 - -Active
 - 3 MM tons in place
 - -LFG Collection/Flare 70 wells
 - -Boiler Project Proposed

Similar Conditions

- Arid to semi-arid climates
- High food wastes 38 %
- First of kind in-country projects
- High energy costs

Waste Stream Comparison

	Israel	U.S.	Mexico
Paper and Paperboard	22	31	14
Glass	3	6	8
Plastics	14	12	10
Food Wastes	38	14	38
Yard Waste	4	11	7
Other	10	4	9

Model Approaches

- Use multiple decay constants (k) for different degradable fractions (0.015 to 0.3)
- Reduce CH4 Generation Potential (Lo) for water content in food waste
- Compare to test data

Hiriya Landfill, Tel Aviv, Israel

LFG Recovery Considerations

- High food/low paper waste = rapid
 LFG generation & decay
- Active landfill status important to utilization
- LFG is hot and wet despite arid climate
- Condensate must be addressed

Case Study - Monterrey Landfill

- World Bank (GEF) grant
- Power costs8-11¢/kW-hr
- Municipally -Owned
- Open 20 more years

Test Program

Test Probes and Sampling

Obstacles

- Mexico has national utility
- Provisions only for self-generation of power
- No LFGTE experience in Mexico
- Currency Risks

Project Structure

- Co-Generation Company will self generate power - 6-8 MWs
 - -SIMEPRODESO landfill owner
 - -Turnkey developer (Strategic Partner)
 - -2 municipal energy users
- CFE will transmit power and provide backup

Project Status

- Proposal/Selection process complete
- CLP (Firm from UK) selected
- Selection based on proposed NPV
- Co-generation company formed 12/01
- Design/Construction 2002

Replication Strategy

- World Bank/GEF funding intended to replicate project
- Information sharing/training available after project start-up
- Candidate sites identified in prefeasibility study

Summary

- GEF grant to reduce risk of 1st Mexico project
- Major GHG reduction benefits
- Significant energy savings
- Strategy for replication

Summary

- LFG to energy
 - Improve solid waste management practices
 - -Improve air quality
 - Provides low cost renewable energy
 - Many opportunities in Mexico

Case Study Dudaim Landfill

- LFG collection and flaring since April
- Energy user 5 km away
- Private funding for project
- Heavy fuel oil costs \$3.90/MMBtu

Investigation

- End-user survey
- Gas testing of new probes and existing features
- LFG recovery modeling
- Environmental Issues
- Cost analysis

LFG Collection

- Decision to install system w/ or w/o energy utilization
- System design and bidding (Fall 2000)
- System Construction (Winter 2001)
- Startup (Spring 2001)

Final Utilization Assignment

- Full scale system testing
 - —Gas quality
 - -Sustainable flows
- Good correlation with model
- Pipeline costs
- End user requirements

Summary

- Pipeline should provide good economic return
- Other options being explored by owner
- Implementation expected in 2002
- Environmental benefits being realized now